## **Reactions of Alkyl Alkylidene Complexes with** Silanes. Synthesis and Characterization of Novel Tantalum 1,1-Metallasilacyclobutadiene and **Disilyl-Substituted Alkylidene Complexes**

## Jonathan B. Diminnie and Ziling Xue\*

Department of Chemistry, The University of Tennessee Knoxville, Tennessee 37996-1600

Received July 11, 1997

We have been investigating cyclopentadienyl (Cp)-free silyl alkylidene complexes of tantalum as models for possible reactive intermediates in the reactions of alkyl alkylidene complexes (RCH<sub>2</sub>)<sub>3</sub>Ta=CHR with SiH<sub>4</sub>.<sup>1,2</sup> Recently, we reported the synthesis and characterization of thermally unstable silvl alkylidene complexes (Me<sub>3</sub>ECH<sub>2</sub>)<sub>2</sub>Ta(=CHEMe<sub>3</sub>)SiPh<sub>2</sub>Bu<sup>t</sup> (E = C, 1; Si, 2), which react with PMe<sub>3</sub> to form bis(phosphine) bis(alkylidene) complexes (Me<sub>3</sub>ECH<sub>2</sub>)Ta(PMe<sub>3</sub>)<sub>2</sub>[=CHEMe<sub>3</sub>]<sub>2</sub><sup>2</sup> (E = C, 3; Si, 4; 3 has been previously prepared by Schrockand co-workers<sup>3</sup>). In order to further study the reaction of silane with alkyl alkylidene complexes, we investigated the reactions of tantalum alkylidene complexes containing phosphine supporting ligands with silanes  $PhR'SiH_2$  (R' = Ph, Me), in the hope that phosphine might help stabilize the resulting products.

When a solution of PhR'SiH<sub>2</sub> (1 equiv) was added to a solution of 4, we were surprised to find immediate H<sub>2</sub> evolution from the solution<sup>4</sup> and formation of a novel metallasilacyclobutadiene complex (5, Scheme 1).<sup>5</sup> Similarly, addition of a solution of PhR'SiH<sub>2</sub> to a solution of (Me<sub>3</sub>SiCH<sub>2</sub>)<sub>3</sub>Ta- $(PMe_3)$ =CHSiMe<sub>3</sub> (6)<sup>6</sup> resulted in a nearly quantitative conversion (by NMR) of 6 to (Me<sub>3</sub>SiCH<sub>2</sub>)<sub>3</sub>Ta[=C(SiMe<sub>3</sub>)SiPhR'H] (7),<sup>5</sup> again with evolution of  $H_2$ . The reaction of the silane with 4 and 6 occurred *exclusively* with the =CHSiMe<sub>3</sub> ligands, and the resulting products 5 and 7 were inert toward further reaction with excess silane. In contrast, Berry and co-workers have observed that  $Cp_2Ta(=CH_2)CH_3$  reacts with  ${}^tBu_2SiH_2$  to give Cp<sub>2</sub>Ta(H)=CHSiHBu<sup>t</sup><sub>2</sub> through a mechanism involving oxidative addition of the silane to a d<sup>2</sup> center, followed by CH<sub>4</sub> elimination and alkylidene transfer and insertion steps.<sup>7a</sup> Bercaw and co-workers have reported that the formation of d<sup>0</sup> Cp\*<sub>2</sub>- $Ta(H)(CH_3)SiH_3$  (Cp\* = pentamethylcyclopentadienyl) from the reaction of  $d^0$  Cp\*<sub>2</sub>Ta(H)=CH<sub>2</sub> with SiH<sub>4</sub> is through the oxidative addition of SiH<sub>4</sub> to d<sup>2</sup> Cp\*<sub>2</sub>Ta-CH<sub>3</sub>, which is in equilibrium with  $Cp*_2Ta(H)=CH_2$ .<sup>7b</sup> It is interesting to point out that no reaction was observed between 4 and <sup>t</sup>Bu<sub>2</sub>SiH<sub>2</sub> in benzene- $d_6$ , even at 65 °C.<sup>8</sup>

Spectroscopic properties of 5 and 7 are consistent with the structure assignments.<sup>5</sup> The <sup>13</sup>C NMR alkylidene resonances of 5a,b and 7a,b range from 238.2 to 255.4 ppm and appear as



singlets in the gated-decoupled <sup>13</sup>C spectra. The molecular structures of 5a,b have been determined by X-ray crystallography and are found to be similar. The structure of 5a is shown in Figure 1.9 Complex 5a exhibits distorted trigonal bipyramidal geometry around the tantalum center, with the PMe<sub>3</sub> ligands occupying axial positions. The Ta=C bond distances of 1.947(12) and 1.962(12) Å are consistent with those observed for other alkylidene complexes of tantalum (1.998(8) and 1.95(2) Å in 4,<sup>2</sup> 1.932(7) and 1.955(7) Å in Ta(=CHBu<sup>t</sup>)<sub>2</sub>-(mesityl)(PMe<sub>3</sub>)<sub>2</sub>,<sup>10</sup> and 1.932(9) Å in [Ta(=CHBu<sup>t</sup>)(CH<sub>2</sub>Bu<sup>t</sup>)- $(PMe_3)_2]_2(\mu - N_2)^{11}$ ). The metallasilacyclobutadiene ring in 5a is planar (average deviation from least-squares plane = 0.007Å), which brings the silicon atom in close proximity to the tantalum center (Ta-Si distance of 2.607(3) Å); however, the fact that the metal center is formally d<sup>0</sup> makes any metal-silicon bonding interaction unlikely.<sup>12</sup> The silicon atom of the metallasilacyclobutadiene ring in 5a exhibits distorted tetrahedral geometry, with bond angles ranging from 96.7(5)° to 115.9- $(6)^{\circ}$ . The structure of **5a** is novel, and to our knowledge represents the first example of a 1,1-metallasilacyclobutadiene complex. A number of metallasilacyclobutane complexes have been synthesized and structurally characterized by Marks, Girolami, Wilkinson, Petersen, and others,<sup>13-16</sup> and a large number of conjugated metallacyclobutadiene complexes are known;<sup>17</sup> however, to our knowledge, complexes **5a**,**b** represent the first cyclobutadiene complexes in which both double bonds are localized exclusively on the metal atom.<sup>18</sup>

When the reaction of 6 with excess deuterated silane PhMeSiD<sub>2</sub> (2-5 equiv) was monitored by NMR, the predominant product was identified as (Me<sub>3</sub>SiCH<sub>2</sub>)<sub>3</sub>Ta=[C(SiPhMeD)-SiMe<sub>3</sub>] (7a-d<sub>1</sub>),<sup>5</sup> along with a trace amount of 7a. PhMeSiHD and PhMeSi $H_2$  were also observed in the reaction mixture. The possibility of H incorporation into PhMeSiD<sub>2</sub> occurring by exchange with the Me<sub>3</sub>SiCH<sub>2</sub>- ligands of **6** was investigated by

(14) Bruno, J. W.; Marks, T. J.; Day, V. W. J. Am. Chem. Soc. 1982, 104.7357.

<sup>(1) (</sup>a) Xue, Z.; Li, L.; Hoyt, L. K.; Diminnie, J. B.; Pollitte, J. L. J. Am. Chem. Soc. 1994, 116, 2169. (b) Li, L.; Diminnie, J. B.; Liu, X.; Pollitte, J. L.; Xue, Z. Organometallics 1996, 15, 3520. (c) Xue, Z. Comments Inorg. *Chem.* **1996**, *18*, 223. (d) Li, L.; Hung, M.; Xue, Z. J. Am. Chem. Soc. **1995**, *117*, 12746. (e) For a review of transition metal silyl complexes, see: Tilley, T. D. In The Silicon Heteroatom Bond; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1991; Chapters 9 and 10. Sharma, H. K.; Pannell, K. H. Chem. Rev. 1995, 95, 1351.

<sup>(2)</sup> Diminnie, J. B.; Hall, H. D.; Xue, Z. J. Chem. Soc., Chem. Commun. 1996, 2383.

<sup>(3)</sup> Fellmann, J. D.; Schrock, R. R.; Rupprecht, G. A. J. Am. Chem. Soc. 1981, 103, 5752.

<sup>(4)</sup> A signal is observed at 4.47 ppm (relative to  $C_6D_5H$  at 7.15 ppm), whose chemical shift is identical to that of  $H_2$  in benzene- $d_6$  prepared independently

<sup>(5)</sup> See the Supporting Information for experimental and spectroscopic details.

<sup>(6)</sup> Rupprecht, G. A. Ph.D. Thesis, Massachusetts Institute of Technology, 1979.

<sup>(7) (</sup>a) Berry, D. H.; Koloski, T. S.; Carroll, P. J. Organometallics 1990, 9, 2952. (b) Parkin, G.; Bunel, E.; Burger, B. J.; Trimmer, M. S.; van Asselt, A.; Bercaw, J. E. J. Mol. Catal. **1987**, 41, 21.

<sup>(8)</sup> After a benzene-d<sub>6</sub> solution of **4** and excess <sup>t</sup>Bu<sub>2</sub>SiH<sub>2</sub> was heated for 24 h at 65 °C, a 5% thermal decomposition of 4 to (Me<sub>3</sub>SiCH<sub>2</sub>)<sub>4</sub>Ta<sub>2</sub>(µ-CSiMe<sub>3</sub>)<sub>2</sub><sup>19</sup> had occurred; however, no reaction with 'Bu<sub>2</sub>SiH<sub>2</sub> was observed.

<sup>(9)</sup> Crystal data for **5a**: monoclinic,  $P2_1/n$  (No. 14), a = 10.647(3) Å, b = 17.757(6) Å, c = 18.686(5) Å,  $\beta = 96.91(3)^\circ$ , V = 3507(2) Å<sup>3</sup>, Z =

<sup>4,</sup>  $R(R_wF^2) = 5.04$  (12.40)% with 4617 unique reflections with  $F > 2.0\sigma$ -(F), GOF = 1.03, number of parameters refined = 289.

 <sup>(10)</sup> Churchill, M. R.; Youngs, W. J. *Inorg. Chem.* **1979**, *18*, 1930.
 (11) Churchill, M. R.; Wasserman, H. J. *Inorg. Chem.* **1981**, *20*, 2899.
 Turner, H. W.; Fellmann, J. D.; Rocklage, S. M.; Schrock, R. R.; Churchill, M. R.; Wasserman, H. J. J. Am. Chem. Soc. 1980, 102, 7809.

<sup>(12)</sup> Our preliminary *ab initio* quantum mechanics calculations support this conclusion. Wu, Y.-D.; Xue, Z. Unpublished results.
(13) Tikkanen, W. R.; Liu, J. Z.; Egan, J. W., Jr.; Petersen J. L.

Organometallics 1984, 3, 825

<sup>(15)</sup> Behling, T.; Girolami, G. S.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1984, 877.

<sup>(16)</sup> Morse, P. M.; Spencer, M. D.; Wilson, S. R.; Girolami, G. S. Organometallics 1994, 13, 1646.

<sup>(17)</sup> For a review of metallacyclobutadiene complexes, see: (a) Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; Wiley: New York, 1988; Chapter 7. (b) Engel, P. F.; Pfeffer, M. Chem. Rev. 1995, 95, 2281 and references therein.



Figure 1. ORTEP of 5a, showing 50% thermal ellipsoids. Selected bond distances (Å) and angles (deg): Ta-C(1) 1.947(12), Ta-C(2) 1.962(12), Ta-C(3) 2.285(11), Ta-P(1) 2.605(3), Ta-P(2) 2.665(3), C(1)-Si(4) 1.901(11), C(2)-Si(4) 1.900(11), C(1)-Si(1) 1.832(12), C(2)-Si(2) 1.819(11), P(1)-Ta-P(2) 161.97(10), P(1)-Ta-C(3) 80.7-(3), P(2)-Ta-C(3) 85.6(3), C(1)-Ta-C(2) 93.1(4), C(1)-Ta-C(3) 134.4(4), C(2)-Ta-C(3) 132.5(4), C(1)-Si(4)-C(2) 96.7(5), Ta-C(1)-Si(4) 85.3(5), Ta-C(2)-Si(4) 84.9(5).

Scheme 2



monitoring a solution containing PhMeSiD<sub>2</sub> and (Me<sub>3</sub>SiCH<sub>2</sub>)<sub>4</sub>- $Ta_2(\mu$ -CSiMe<sub>3</sub>)<sub>2</sub>,<sup>19</sup> which we had found to be inert toward reaction with PhMeSiH<sub>2</sub>. No such H/D exchange was observed by <sup>1</sup>H NMR over 2.5 h at 50 °C, ruling out exchange with residual protons in the solvent and suggesting that exchange with -CH<sub>2</sub>SiMe<sub>3</sub> ligands would be unlikely. In addition, analysis of the gaseous products from the reaction with PhMeSiD<sub>2</sub> by mass spectrometry showed the predominant product to be  $D_2$ , with some HD also present.5 These observations lead us to propose a possible mechanism for the formation of 7 (Scheme 2). The silane first reacts by addition across the Ta=C bond to form a hydride (deuteride) intermediate 8, which then reacts with a second equivalent of silane, producing  $H_2$  (D<sub>2</sub>) and a silvl intermediate 9. Complex 9 then undergoes  $\alpha$ -hydrogen abstraction by the -SiPhR'H ligand to yield 7, reforming the silane in the process. With PhR'SiD<sub>2</sub>, this final step would yield PhR'SiHD, which could further react to form PhR'SiH<sub>2</sub>, consistent with the results obtained from the reaction with PhMeSiD<sub>2</sub>.



Workup of the reaction mixture to produce 7 yields a red oil of reasonably pure (>95% by <sup>1</sup>H NMR) 7. However, all attempts to isolate analytically pure samples of this compound were unsuccessful, as 7 was found to be thermally unstable. When monitored by NMR in benzene- $d_6$ , 7 slowly decomposed through SiMe<sub>4</sub> elimination; however, a solution of 7 in benzene could be frozen and stored at -20 °C for several weeks without significant decomposition. When the reaction to form 7 is monitored by NMR, a partial conversion of 7 to 5, along with formation of SiMe<sub>4</sub>, is observed after several days; 5 is not observed during the formation of 7. A possible mechanism for this conversion is shown in Scheme 3. Reactions similar to those shown in Scheme 3 may be involved in the conversion of 4 to 5: attack at one of the alkylidene ligands to produce  $H_2$ and 10, followed by intramolecular attack of the alkylidene -SiPhR'H group on the second alkylidene as proposed above to give 5, with a small excess of silane acting as a catalyst.

The preferential reaction of the alkylidene ligands, rather than the alkyl ligands, of **4** and **6** with PhR'SiH<sub>2</sub> was unexpected. In order to probe whether such a preference is general, the reaction of the neopentyl analog **3** with PhMeSiH<sub>2</sub> was investigated. Surprisingly, no H<sub>2</sub> was observed; rather, a considerable amount of CMe<sub>4</sub> formed, along with a mixture of unidentified products.<sup>20</sup> It therefore appears that the silicon atoms in the -CH<sub>2</sub>SiMe<sub>3</sub> and ==CHSiMe<sub>3</sub> ligands of **4** may exert an important influence over the course of the reactions of silanes with alkyl alkylidene complexes.<sup>21</sup> Kinetic studies are currently underway to further probe the possible mechanistic pathways of these reactions.

Acknowledgment is made to the NSF Young Investigator Award program (CHE-9457368), the DuPont Young Professor Award, the donors of the Petroleum Research Fund (28044-G3), administered by the American Chemical Society, and the Camille Dreyfus Teacher-Scholar Award for financial support of this research. We thank Professor Gregory Girolami for helpful discussion regarding the crystal structures of **5a,b** and Dr. Al Tuinman for assistance in obtaining mass spectra.

**Supporting Information Available:** Experimental and spectroscopic data for **5** and **7**; crystal structure of **5b** along with crystal-lographic and structural data for **5a,b** (23 pages). See any current masthead page for ordering and Internet access instructions.

<sup>(18)</sup> Metallacyclo*penta*diene and -triene complexes have been reported; see, e.g.: (a) Johnson, E. S.; Balaich, G. J.; Rothwell, I. P. *J. Am. Chem. Soc.* **1997**, *119*, 7685. (b) Hessen, B.; Teuben, J. H. *J. Organomet. Chem.* **1989**, *367*, C18.

<sup>(19)</sup> Mowat, W.; Wilkinson, G. J. Chem. Soc. Dalton Trans., 1973, 1120.

JA972302F

<sup>(20)</sup> There was a report of the reactions of lanthanide alkyl complexes with silanes to produce alkylsilanes and metal hydride complexes. Voskoboynikov, A. Z.; Parshina, I. N.; Shestakova, A. K.; Butin, K. P.; Beletskaya, I. P.; Kuz'mina, L. G.; Howard, J. A. K. *Organometallics* **1997**, *16*, 4041.

<sup>(21)</sup> It is well-known that silicon stabilizes an adjacent carbon-metal bond. Fleming, I. In *Comprehensive Organic Chemistry*; Jones, D. N., Ed.; Pergamon: New York, 1979; Vol. 3, Chapter 13, p 541.